Visualization Functions for SpCV Buffer Methods.
Source:R/autoplot.R
autoplot.ResamplingSpCVBuffer.Rd
Generic S3 plot()
and autoplot()
(ggplot2) methods to
visualize mlr3 spatiotemporal resampling objects.
Arguments
- object
[Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer.- task
[TaskClassifST]/[TaskRegrST]
mlr3 task object.- fold_id
[numeric]
Fold IDs to plot.- plot_as_grid
[logical(1)]
Should a gridded plot using via patchwork be created? IfFALSE
a list with of ggplot2 objects is returned. Only applies if a numeric vector is passed to argumentfold_id
.- train_color
[character(1)]
The color to use for the training set observations.- test_color
[character(1)]
The color to use for the test set observations.- show_omitted
[logical]
Whether to show points not used in train or test set for the current fold.- ...
Passed to
geom_sf()
. Helpful for adjusting point sizes and shapes.- x
[Resampling]
mlr3 spatial resampling object of class ResamplingSpCVBuffer.
Examples
# \donttest{
if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
library(mlr3)
library(mlr3spatiotempcv)
task = tsk("ecuador")
resampling = rsmp("spcv_buffer", theRange = 1000)
resampling$instantiate(task)
## single fold
autoplot(resampling, task, fold_id = 1) +
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
## multiple folds
autoplot(resampling, task, fold_id = c(1, 2)) *
ggplot2::scale_x_continuous(breaks = seq(-79.085, -79.055, 0.01))
}
# }