This task specializes Task and TaskSupervised for
spatiotemporal classification problems. The target column is assumed to be a
factor. The task_type
is set to "classif"
and "spatiotemporal"
.
A spatial example task is available via tsk("ecuador")
, a spatiotemporal
one via tsk("cookfarm_mlr3")
.
The coordinate reference system passed during initialization must match the
one which was used during data creation, otherwise offsets of multiple meters
may occur. By default, coordinates are not used as features. This can be
changed by setting coords_as_features = TRUE
.
See also
Other Task:
TaskRegrST
,
mlr_tasks_cookfarm_mlr3
,
mlr_tasks_diplodia
,
mlr_tasks_ecuador
Super classes
mlr3::Task
-> mlr3::TaskSupervised
-> mlr3::TaskClassif
-> TaskClassifST
Active bindings
crs
(
character(1)
)
Returns coordinate reference system of task.coordinate_names
(
character()
)
Coordinate names.coords_as_features
(
logical(1)
)
IfTRUE
, coordinates are used as features. This is a shortcut fortask$set_col_roles(c("x", "y"), role = "feature")
with the assumption that the coordinates in the data are named"x"
and"y"
.
Methods
Inherited methods
mlr3::Task$add_strata()
mlr3::Task$cbind()
mlr3::Task$data()
mlr3::Task$filter()
mlr3::Task$format()
mlr3::Task$formula()
mlr3::Task$head()
mlr3::Task$help()
mlr3::Task$levels()
mlr3::Task$missings()
mlr3::Task$rbind()
mlr3::Task$rename()
mlr3::Task$select()
mlr3::Task$set_col_roles()
mlr3::Task$set_levels()
mlr3::Task$set_row_roles()
mlr3::TaskClassif$droplevels()
mlr3::TaskClassif$truth()
Method new()
Create a new spatiotemporal resampling Task
Usage
TaskClassifST$new(
id,
backend,
target,
positive = NULL,
label = NA_character_,
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
extra_args = list()
)
Arguments
id
(
character(1)
)
Identifier for the new instance.backend
(DataBackend)
Either a DataBackend, or any object which is convertible to a DataBackend withas_data_backend()
. E.g., amsf
will be converted to a DataBackendDataTable.target
(
character(1)
)
Name of the target column.positive
(
character(1)
)
Only for binary classification: Name of the positive class. The levels of the target columns are reordered accordingly, so that the first element of$class_names
is the positive class, and the second element is the negative class.label
(
character(1)
)
Label for the new instance. Shown inas.data.table(mlr_tasks)
.coordinate_names
(
character(1)
)
The column names of the coordinates in the data.crs
(
character(1)
)
Coordinate reference system. WKT2 or EPSG string.coords_as_features
(
logical(1)
)
IfTRUE
, coordinates are used as features. This is a shortcut fortask$set_col_roles(c("x", "y"), role = "feature")
with the assumption that the coordinates in the data are named"x"
and"y"
.extra_args
(named
list()
)
Named list of constructor arguments, required for converting task types viaconvert_task()
.
Method coordinates()
Returns coordinates of observations.
Arguments
row_ids
(
integer()
)
Vector of rows indices as subset oftask$row_ids
.
Method print()
Print the task.
Examples
# \donttest{
if (mlr3misc::require_namespaces(c("sf", "blockCV"), quietly = TRUE)) {
task = as_task_classif_st(ecuador,
target = "slides",
positive = "TRUE", coordinate_names = c("x", "y")
)
# passing objects of class 'sf' is also supported
data_sf = sf::st_as_sf(ecuador, coords = c("x", "y"))
task = as_task_classif_st(data_sf, target = "slides", positive = "TRUE")
task$task_type
task$formula()
task$class_names
task$positive
task$negative
task$coordinates()
task$coordinate_names
}
#> [1] "X" "Y"
# }