Convert to a Spatiotemporal Regression Task
Source:R/as_task_classif_st.R
, R/as_task_regr_st.R
as_task_regr_st.Rd
Convert object to a TaskRegrST.
This is a S3 generic, specialized for at least the following objects:
TaskRegrST: Ensure the identity.
data.frame()
and DataBackend: Provides an alternative to the constructor of TaskRegrST.sf::sf: Extracts spatial meta data before construction.
TaskClassif: Calls
convert_task()
.
Usage
# S3 method for TaskClassifST
as_task_regr_st(
x,
target = NULL,
drop_original_target = FALSE,
drop_levels = TRUE,
...
)
as_task_regr_st(x, ...)
# S3 method for TaskRegrST
as_task_regr_st(x, clone = FALSE, ...)
# S3 method for data.frame
as_task_regr_st(
x,
target,
id = deparse(substitute(x)),
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
label = NA_character_,
...
)
# S3 method for DataBackend
as_task_regr_st(
x,
target,
id = deparse(substitute(x)),
positive = NULL,
coordinate_names,
crs,
coords_as_features = FALSE,
label = NA_character_,
...
)
# S3 method for sf
as_task_regr_st(
x,
target = NULL,
id = deparse(substitute(x)),
coords_as_features = FALSE,
label = NA_character_,
...
)
# S3 method for TaskClassifST
as_task_regr_st(
x,
target = NULL,
drop_original_target = FALSE,
drop_levels = TRUE,
...
)
Arguments
- x
(any)
Object to convert.- target
(
character(1)
)
Name of the target column.- drop_original_target
(
logical(1)
)
IfFALSE
(default), the original target is added as a feature. Otherwise the original target is dropped.- drop_levels
(
logical(1)
)
IfTRUE
(default), unused levels of the new target variable are dropped.- ...
(any)
Additional arguments.- clone
(
logical(1)
)
IfTRUE
, ensures that the returned object is not the same as the inputx
.- id
(
character(1)
)
Id for the new task. Defaults to the (deparsed and substituted) name of the data argument.- coordinate_names
(
character(1)
)
The column names of the coordinates in the data.- crs
(
character(1)
)
Coordinate reference system. WKT2 or EPSG string.- coords_as_features
(
logical(1)
)
IfTRUE
, coordinates are used as features. This is a shortcut fortask$set_col_roles(c("x", "y"), role = "feature")
with the assumption that the coordinates in the data are named"x"
and"y"
.- label
(
character(1)
)
Label for the new instance. Shown inas.data.table(mlr_tasks)
.- positive
(
character(1)
)
Only for binary classification: Name of the positive class. The levels of the target columns are reordered accordingly, so that the first element of$class_names
is the positive class, and the second element is the negative class.
Examples
# \donttest{
if (mlr3misc::require_namespaces(c("sf"), quietly = TRUE)) {
library("mlr3")
data("cookfarm_mlr3", package = "mlr3spatiotempcv")
# data.frame
as_task_regr_st(cookfarm_mlr3, target = "PHIHOX",
coords_as_features = FALSE, crs = 26911,
coordinate_names = c("x", "y"))
# sf
cookfarm_sf = sf::st_as_sf(cookfarm_mlr3, coords = c("x", "y"), crs = 26911)
as_task_regr_st(cookfarm_sf, target = "PHIHOX")
}
#> <TaskRegrST:cookfarm_sf> (178840 x 23)
#> * Target: PHIHOX
#> * Properties: -
#> * Features (22):
#> - dbl (18): BLD, LHDICM, Port1C, Port1EC, Port1VW, Port2C, Port2EC,
#> Port2VW, Port3C, Port3EC, Port3VW, Port4C, Port4EC, Port4VW,
#> Port5C, Port5EC, Port5VW, UHDICM
#> - fct (3): HZDUSD, SOURCEID, TAXSUSDA
#> - chr (1): Date
#> * Coordinates:
#> X Y
#> <num> <num>
#> 1: 493383.1 5180586
#> 2: 493383.1 5180586
#> 3: 493383.1 5180586
#> 4: 493383.1 5180586
#> 5: 493383.1 5180586
#> ---
#> 178836: 493841.6 5181101
#> 178837: 493841.6 5181101
#> 178838: 493841.6 5181101
#> 178839: 493841.6 5181101
#> 178840: 493841.6 5181101
# }