Convert to a Spatiotemporal Classification Task
Source:R/as_task_classif_st.R
as_task_classif_st.Rd
Convert an object to a TaskClassifST. This is a S3 generic for the following objects:
TaskClassifST: Ensure the identity.
data.frame()
and DataBackend: Provides an alternative to the constructor of TaskClassifST.sf::sf: Extracts spatial meta data before construction.
TaskRegr: Calls
convert_task()
.
Usage
as_task_classif_st(x, ...)
# S3 method for TaskClassifST
as_task_classif_st(x, clone = FALSE, ...)
# S3 method for data.frame
as_task_classif_st(
x,
target,
id = deparse(substitute(x)),
positive = NULL,
coordinate_names,
crs = NA_character_,
coords_as_features = FALSE,
label = NA_character_,
...
)
# S3 method for DataBackend
as_task_classif_st(
x,
target,
id = deparse(substitute(x)),
positive = NULL,
coordinate_names,
crs,
coords_as_features = FALSE,
label = NA_character_,
...
)
# S3 method for sf
as_task_classif_st(
x,
target = NULL,
id = deparse(substitute(x)),
positive = NULL,
coords_as_features = FALSE,
label = NA_character_,
...
)
Arguments
- x
(any)
Object to convert.- ...
(any)
Additional arguments.- clone
(
logical(1)
)
IfTRUE
, ensures that the returned object is not the same as the inputx
.- target
(
character(1)
)
Name of the target column.- id
(
character(1)
)
Id for the new task. Defaults to the (deparsed and substituted) name of the data argument.- positive
(
character(1)
)
Only for binary classification: Name of the positive class. The levels of the target columns are reordered accordingly, so that the first element of$class_names
is the positive class, and the second element is the negative class.- coordinate_names
(
character(1)
)
The column names of the coordinates in the data.- crs
(
character(1)
)
Coordinate reference system. WKT2 or EPSG string.- coords_as_features
(
logical(1)
)
IfTRUE
, coordinates are used as features. This is a shortcut fortask$set_col_roles(c("x", "y"), role = "feature")
with the assumption that the coordinates in the data are named"x"
and"y"
.- label
(
character(1)
)
Label for the new instance. Shown inas.data.table(mlr_tasks)
.
Examples
if (mlr3misc::require_namespaces(c("sf"), quietly = TRUE)) {
library("mlr3")
data("ecuador", package = "mlr3spatiotempcv")
# data.frame
as_task_classif_st(ecuador, target = "slides", positive = "TRUE",
coords_as_features = FALSE,
crs = "+proj=utm +zone=17 +south +datum=WGS84 +units=m +no_defs",
coordinate_names = c("x", "y"))
# sf
ecuador_sf = sf::st_as_sf(ecuador, coords = c("x", "y"), crs = 32717)
as_task_classif_st(ecuador_sf, target = "slides", positive = "TRUE")
}
#> <TaskClassifST:ecuador_sf> (751 x 11)
#> * Target: slides
#> * Properties: twoclass
#> * Features (10):
#> - dbl (10): carea, cslope, dem, distdeforest, distroad,
#> distslidespast, hcurv, log.carea, slope, vcurv
#> * Coordinates:
#> X Y
#> <num> <num>
#> 1: 712882.5 9560002
#> 2: 715232.5 9559582
#> 3: 715392.5 9560172
#> 4: 715042.5 9559312
#> 5: 715382.5 9560142
#> ---
#> 747: 714472.5 9558482
#> 748: 713142.5 9560992
#> 749: 713322.5 9560562
#> 750: 715392.5 9557932
#> 751: 713802.5 9560862